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Simulation of quantum random walks using the interference of a classical field
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We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters,
phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave
nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoher-
ence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the
decoherence parameters.
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[. INTRODUCTION nature of a field. This possibility is neither always obvious
nor mentioned in other models. It should be pointed out that
Random walks are useful models for physicists to studya similar scheme of all-optical implementation has been sug-
statistical behaviors of nature such as Brownian motions ogested by Zhaet al.[7]. Their proposal is entirely based on
free particled1]. They have also been studied for practicalthe quantum coherence of a quantum superposition of two
use such asalgorithms in computer sciefjeand risk man- ~ Polarization degrees of freedom. On the other hand, our
agement in financg3]. Quantum versions of random walks scheme is able to take the wave nature of any input field
have been recently studied for both fundamental interestélassical or nonclassigao show the same interference pat-
and the expectation of building new algorithms for quantumtern. This, with the explanation of the role of the phase
computation[4]. There have been several suggestions for #hifters in our scheme, is shown in Sec. lll. Section IV is
practical implementation of quantum random walks, usingdevoted to the study of the decoherence effects in our pro-
ions in linear traps, optical lattices, and cavity QER6]. posal. We show that decoherence on the coin tossing opera-
Recently, proposals for the implementation of quantum rantion and on the quantum walker motion can be simulated and
dom walks with linear optical elements have been suggeste#fudied by means of our system, thus demonstrating the role
[7,8] and the first search algorithm using quantum randon®f the interference effectsin this simulation. This investiga-
walks has been reportd®]. Quantum random walks typi- tion is useful even from a_practlcal point of view because it
cally show very different patterns from the Gaussian distri-Singles out and characterizes the effect of a class of errors
butions for classical random walks, which have some rethat could affect a performed experiment.
markable characteristics such as an exponentially fast hitting
time [4]. It has been pointed out that these differences are
due to the existence of quantum coherefigle Il. QUANTUM RANDOM WALK WITH LINEAR
In this paper, we suggest a theoretical scheme to simulate OPTICAL ELEMENTS
quantum random walks on a line using the wave nature of |n ynjdimensional coined random walks, the walker is
classical light fields. This is related to the fact that the idea Ofestricted to move along a line with a number of discrete
quantum coherence is originally borrowed from the interfer-integer points on it. The walker is supposed to be a classical
ence of wave mechanics shown in Young's double-slit exparticle on one of the integer points. A coin tossing deter-
periment. In our scheme, it is also possible to simulate decomines whether the walker moves left or right for each step.
herence processes modeled using additional random phasg-the quantum version of coined random walks, the classical
shifters and beam splitters with erratic transmittivity. This coin is replaced by a quantum bit whose statesand|R)
analysis is relevant under different points of view. First of all represent the logical values LEFT and RIGHT. The quantum
it shows that, increasing the amount of decoherence that afoin can be embodied by an internal degree of freedom of
fects the system, the distribution of the random walk changeghe walker itself[4]. The walker, which is a quantum par-
from a totally quantum one to a classical Gaussian distributicle, moves conditioned to the result of the coin tossing
tion. This clarifies the role played by the interference effectyperation which is realized by a Hadamard transfgin For

in the dynamics of a quantum walker and represents an ultgsxample, the transformation for one step of the particle from
rior proof of the validity of a simulation based on interfero- an arbitrary pointx is simply

metric devices. On the other hand, studying the effects of
possible sources of errors in our model, we can single out the

causes of certain deviations from the ideality in the patterns 1
resulting from performed experiments. IX,R)— EGXJF LRY+[X=1L)),
This paper is organized as follows. In Sec. Il, we briefly
review coined quantum random walks on a line with their @
characteristics and we suggest a scheme for the simulation of 1
quantum random walks. We will later show that,with this IX,L)— —=(|X+LR)—|X—1L)).
setup, we can simulate quantum random walks using wave V2
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After n steps, the state of the system|ik,). Differently
from the classical walks on a line, where the position of the
particle is monitored at every step of the process, in the
guantum version the walker remains in a superposition of
many positions until the final measurement is performed.
The probability for the particle being &, after n steps is
Pa(X) = (R )2+ [(L[(X ¥ )]°. During the quan-
tum random walk process, destructive as well as constructive
interference may occur. The quantum correlation between
two different positions on a line introduced at the first step
may be kept by delaying the measurement step until the final
iteration.

The probability distribution to find the particle at a given
position is generally dependent on the initial state of the
system[5] and exhibits avery structured pattern. This allows
only numerical evaluations of its variance. It has been shown
that, roughly, the standard deviatiaryr\ grows linearly
with N and is independent of the initial state of the cpih
Thus, the walker in quantum walks explores its possible con-
figurations faster than in classical walks, where the standard
deviation grows as/N. This motivates the conjecture that
algorithms based on quantum random walks could beat their

;Iracl)sbsl,gril[g\aersmns in terms of the time needed to solve a FIG. 1. All-optical setup for the simulation of quantum random

There have been a few suggestions for experimentaf’lvalks on.aline(a) Two c.iiffAerent kinds of operations are showiry;
implementations of quantum random wall. Recently, it 'S an ordinary beAam splittdd,( 6, ¢) andT, |nvolve§ the cascade of
has been shown that quantum random walks can be realizé@e phase shifteP,(7/2), of a 50:50 beam splitteB;(/2,7) and
using linear optical elemenfg]. In this scheme, polarization of the phase shiftelP,(— 7/2). (b) Proposed setup, shown up to the
beam splitters, half-wave plates, and photodetectors are usd@gurth dynamic line. Apart from the input state, all the other modes
The walker is embodied in a single-photon state and thé&re initially prepared in vacuum states.
entire scheme is based on the quantum coherence of two
polarization states of the photon. This result is inspiring as a
proposal for an all-optical implementation of a quantum ran-
dom walk, even if it requires a reliable single-photon state
source, which i; very d_emanding, and the apparatus is highly here B.(6, ) = exp((812) (€ ¢é£éd_e—i¢égés)} is the
sensitive to variations in the photons polarization. . - At I

First, we propose a scheme which uses ordinary So:sgceam.sphtter operator andsq (3s,4) are the annihilation
beam splitters, phase shifters, and photodetectors. We form creation operators for a s.|deward and a downward field
late quantum random walks with the coin tossing operatiodde: respectively. We define the transformation in €.
embedded in the translation of the walker particle. In ourasT;. We introduce the transformatiory,
scheme, the polarization degree of freedom does not play a
role and, thus, is not considered at all. A single-mode field, 1
including a thermal field, may be used as an input to simulate 11,0045~ E(M’OH 10,D) s 3
the distribution of the quantum random walk. In fact, this
may be apparent if we recall that Young used a thermal field .
for his double-slit experiment and showed interference.

Let us consider the experimental setup, composed of |0'1>dlsﬁE(|1’O>_|0'1>)d'3’ @)
50:50 beam splitters, phase shifters, and photodetectors,
shown in.Fig. 1 For convenience, we denote the field modea,hiCh can be realized with a 50:50 beam spliis( 7/2,7)
propagating sidewards by and downwards byd. As the . i aTa .
beam splitters used here are polarization insensitive, thes¥d .tV\{?A phase shifter®,(m/2)=¢e'"2s2* and P,(— w/2)
modes do not refer to polarization. Here, we consider a=e™'™d'2 as shown in Fig. ().
single-photon statfl) as the initial state of the walker and ~ The scheme can simply be illustrated as recursive appli-
we show that, in this case, our scheme gives rise to coinegations ofT, after the initial transformatioft;, as shown in
quantum random walks on a line. At the first beam splitterrig. 1(b). A dynamic line[7] is represented by a row of
B1(6, %) the input field is mixed with a field mode prepared aligned optical elemeni®r photodetectoislabeledj in Fig.
in a vacuum statgFig. 1(a)]. The following transformationis 1(b). On the other hand, a node is given by a point repre-
realized: sented byk on a dynamic line. For example, the detector

(b)

B1(0,0)]0.)q,1=C0%y | 1.0+ & 4Sing [0.g, (2
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D_, is on the fourth dynamic line and occupies the né&de
=—2. If a photon is incident downwar¢sideward on a
dynamic linej and nodek, we represent its state fs,d);
(|k,s>]-). The transition from a dynamic lingto j+1 by

means of the operatioh, is synthesized by

1
|k’d>j_>ﬁ(|k+ 1d)+[k=1,8));+1,
(5
1
|k,S>J—>E(|k+ 1,d)—|k—l,$>)j+l.

We notice that Eqs(5) are equivalent to Eqgl). Thus, the
actions of T, and T, on a single-photon state exactly corre-

sponds to a coined quantum random walk. Any initial coin

state, up to an irrelevant global phase, can be prepared
changingd and ¢ in T;. If 6==/2 and¢=— /2, we get

PHYSICAL REVIEW A69, 012310(2004

Position

FIG. 2. Average photon-number distribution for an input coher-
ent statee=1), as a function of the position along the final dy-
namic line. Three different cases are considered: the solid-line curve
is relative to a number of steg$§=4, the dashed-line represents
N=5, while the dot-dashed one is fdbf=6. The plots match per-
ectly the graphs expected for a coined quantum walk on a line. In
Me general case af+ 1, N, has to be normalized with respect to
|al?.

the symmetric probability distribution that corresponds to the
initial coin state {R)+i|L))/\2 in a coined quantum walk Here, N, (|a))=|a|? is the average photon number for the

[6]. In our model, the difference between quantum and clas

input state|a) and M(N,k) is the normalized photon-

sical walks from a certain step is due to the interference of,mper distributiorat stepN and nodek. It characterizes the

the walker's paths on th&, processe§11].

Ill. ANALYSIS WITH DIFFERENT STATES
OF THE WALKER

output photon-number distribution at the detectors. We find
that the distributionM (4 k) for an input coherent state is the
same as the one for the single-photon inf@lt i.e., the two
different inputs result in the same photon-number distribu-
tion. The average photon numbers for stéys 4,5,6 are

In this section we show that the scheme suggested in Fig o\ in Fig. 2. The deviations of a quantum walk from its
1 exhibits the same interference pattern at the detectors rerassical counterpart appears from the fourth step. This is due
gardless of the nature of the input state. We first address thg e particular values of the parameters in the transforma-

case of an input coherent state and, then, we extend tq?on %,: =2 and= — /2. Since a coherent-state input

analysis to any field. results in the same quantum random-walk pattern of the

single-photon case for all the steps we have considered, we

conjecture that the quantum walk pattern results, even for
A coherent statéa) (aeC) is generally assumed to be any initial state for a general number of stedsIn what

the best description of the state of a laser beam. We considévllows, we prove the validity of this conjecture.

|) as the input state of the walker. The action of the beam

splitter operator on two input coherent states does not lead to

any entanglement between the output mddé&s. Assuming .

6= /2 and = — /2 for the T, process, we can calculate be\/r\gtf:etz:n?égpgssed setup, the quantum walk process can

the distribution of the average photon number as a function P

of the positionk on the chosen final dynamic line. For ex-

ample, forN=4 steps, we find the final state

A. Coherent states

B. General case

|CDN>:0T(]=N) - -OT(j=1):|—l(j=0)|q)0>50(,\glw|q)0>1

—ia —ia 1-2i -2 0

-4 -2 a where|®) is the input stateN is the number of steps, and
|)=|——.s) |——.d as) |+.d N . . .
4 44 4 4 147, U is an appropriate unitary transformation for each step.
For a coherent state, the previous result can be summarized
ia >0_2_i d>+2a >+2_a d>+4 as
&|—,S a, -5 7 ,
4 4 4 4 4 4 4 4

©®) o
|Po)=[a) — [x1a)1[x2@)2 . . . [xna)on=|PN).
with |a,S>}< (|a,d>}‘) indicating a coherent state incident
sideward(downward on a dynamic ling and nodek. The
average photon-numbeN,(N,k) for node k is N,(4Kk)

= M(4K)Nin(|@)), with

8

Equation (6) is an explicit example. The average photon
number for mode r (0<r<2N) is n,=|x/|%al?
=|x:|*Nin(l@)),with r=0 corresponding to the mode inci-
dent on the detector that occupjesN, k= —N. Itis easy to
show that the average photon number for kitle node and

M(4x:4)=15,M(4£2)=3, MA0=5 (7
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jth step is given byN,(j.K)=n;_x+nj_:1=(xj-ul*
+]xj -k 1/ Mol @), where xo=xon+1=0. This result
also means that

MK =[x -2+ g -1l > 9

Note thaty, does not depend on the amplitude of the initial

state but only on the structure Bk, .
The initial-state density operator id representation can
be generally written agl,14]

po=f d?aP(a)|a){al, (10 1 +1

FIG. 3. Alternative setup for quantum random walk on a line. In
where P(«a) is the P representation of the initial stajg.  this scheme, the number of required resources scales linearly with
Provided thatP(«a) is a sufficiently singular generalized the number of stepsN. Two rows of acousto-optic modulators
function, such a representation exists for any given operataqiaOMs) direct the incoming beams of light to the perfect mirrors M
po [14]. After N steps, the density operator evolves as or to the detectors row. This setup is conceptually equivalent to that

sketched in Fig. (b).
_MN ANT 2
pN_UQWPOUQW_f d*aP(a)lx10)1{x:0® - imposes serious limitations to the scalability of such a pro-
posal and affects the efficiency of a simulation based on an
@[ xana)an(xanel, (1) interferometric device. In the alternative proposal in Fig. 3,

where Eqgs(8) and (10) have been used. THe representa- this problem is bypassed measyring all the even positions by
the upper row of detectors, while the odd ones are detected

tion is particularly appropriate for our aim to find the average .
photon-number distribution since it can be shown that thé’y the lower row. Acousto-optic modulato(dOMs) [12]

moments of thé® representation give the expectation valuesf[”1re uzed tc(i) ?uutje ? be;ﬂm toward a mlrrtor\/{/cr)]r furttrf]lerAs(t)e':\fl)s or
of normally ordered products of bosonic operatdrdl 4]. oward a detector for the measurement. en the SN

The marginal density matrix for modeis simply ob- the top row_have to deflect the light beams tovv_ard the detec-
tors, those in the bottom row should not be active. The beam

tained as splitters and phase shifters in Figs. 1 and 3 are the same. The
number of required resources, in this latter scheme, increases
p,=f d?aP(a)|xra){xral. (12)  only linearly with the number of stegd9].
There are many difficulties,for a practical implementation
The average photon number for théa mode is of the schemes we propose, that have to be taken into con-

sideration. For example, being a multimode interferometric
non apparatus, the proposed setup could be affected by the mis-
n=Tr[pa'al= |Xr|2f d*aP(a)|al?=| x| Mn(po), alignment of the involved optical elements. Furthermore, we
need 2N modes forN steps of the walk process, which
and the average photon number for thth step and makes the controllability of the system very difficult. Never-
kth node is Np(jik):M(jak)-/\/tot(po):(|)(j—k|2 theless, even if these problems render the proposed setup
+|Xjfk+1|2)/vtot(l)0)y from which Eq.(9) is found to hold  challenging under an experimental point of view, our pro-
for the case of any input field. The interference pattern deposal has to be seen as a thought experiment useful for the
termined by M(j,k) does not depend on the initial input investigation of the physics that is behind the appearance of
state. For a given set of beam splitters and phase shifters, atije characteristic probability pattern of a quantum random
input state will result in the same interference pattern. Onlywalk.
an overall factor will be changed, according to the total av-
erage photon number of the initial state. For a classical light,
in a pictorial way, the result is nothing but quantum random
walks with many walkers simulated by interference between
fields. For a weak field, the quantum random walks with a To better understand how interference effects are at the
single walker can be probabilistically performed. For ex-basis of a quantum walk process we study the effect that a
ample, given a coherent state with=1, a single photon is certain class of errors has on the performance of the setup we
detected with 37% of the probability. propose. A decoherence mechanism is potentially able to
A problem of the approach employirdynamic linesfor ~ wash out the interference pattern, thus erasing the speedup
guantum random walks is that the required number of recharacteristic of a quantum walk and restoring some aspects
sourcegin terms of the number of optical elements requiredof the classical diffusion process. In this section we study
for a chosen number of steps and of the field modes intwo different models for decoherence in our setup. We show
volved) grows quadratically with the number of steps. Thisthe transition of the dynamics of the walker from the pure

IV. SIMULATION OF DECOHERENCE IN QUANTUM
RANDOM WALKS
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guantum to the classical case. This analysis is in part moti- Np
vated by the attention that has been recently paid to the way
in which the quantum walk pattern is modified by imperfect
coin tossings or walker translations, both for quantum walk
on a line and higher dimensiof§,10]. A remarkable result,
shown by Kendon and Tregenna in REE0], is that small
amounts of decoherence, rather than rendering the process
useless for the purposes of quantum information, amazingly
increase the capability of the system to explore its possible
configurations. This gives a probability distribution to find
the walker in a certain position that spreads faster than in
pure dynamics. Our study is able to highlight even this as- F|G. 4. Average photon-number distribution vs position for an
pect of the dynamics of the walker. On the other hand, studymput coherent statbr=1) and for 200 steps. Different cases are
ing the effects of possible sources of decoherence is wortbonsidered: the bell-like curve represents the case of an introduced
from a practical point of view. The characterization of somerandomness taken from a Gaussian distribution centered at 1 and
relevant sources of errors, in the proposed setup, will makeith o,,=0.25. The curve evidently resembles the expected Gauss-
us understand why the pattern resulting from a performedhn distribution. The solid line shows the results égy,=0.0125. It
experiment devoted to the realization of a quantum walks compared with a uniform distribution between20042 and
process could deviate from the ideality. 20042, fictitiously extended to improve visibility. Finally, the
We have considered ulterior phase-shift operations perdashed curve represents the pure quantum case corresponding to

formed just before and after eaéf'!z transformation. The chosen from_aDirac delta functio?(l_fl). Eac_h point in the simu-
shift in these additional operations is randomly chosen fron{2t€d curves is averaged over 50 different trials.

a Gaussian distribution. In what follows, we show how the

mean-photon-number distribution changes its shiémen a  Spread due to a large superimposed randomness.

classical Gaussian pattern to an approximately flat distribu- In Ref.[15], the effect of phase randomness in a general
tion then to a quantum distributipras the amount of ran- interferometric device has been investigated. In particular, if

domness in the additional phase shifts is reduced. the device can be thought as the iterative applications of
If | is a number randomly taken from a Gaussian distribuSome basic units, each one affected by a fixed randomness

tion centered at 1 with an adjustable standard deviatign [15], then Anderson localization can be obtained. Indeed,
we shift the phase of each field mode in Figbjlby an  When fixed randomness is considered, a connection to the
amount equal to 2|l|. If the phase shift is equal to2 the  theory of the band-diagonal transfer matfisxamined in
additional phase shifters are ineffective and a quantum walRRef.[16]) can be established. It is this kind of dynamic evo-
pattern is recovered. On the other hand, if the amount oiution that leads to localization of the walker. PhySica”y, the
shifts deviates from thiseutral value, they affect the inter- Model described in this case is near to the repeated passages
ferences responsible for the quantum walk and some devi&f @ beam of light through a dielectric layer placed inside an

tions have to be expected and the average over alarge nurlectromagnetic cavity, as described in REE7]. In our
ber of trials results in a classical distribution. model, however, no localization effect is achieved since dif-

In Fig. 4, the shown distributions are the results of anferent values for the phase shifts at each step are taken. In
average over 50 different trials: in each one of them, and fofhis respect, our case is far from a band-diagonal evolution.
each step in a Sing|e triaL a different random valuelf@s These qua”tative arguments are resumed in F|g 5, where the
considered and the mean photon_number at the various |OCH.anSiti0n from a flat distributiOI(IObtained for a small deco-
tions on the final dynamic line is calculated, averaging oveiherence parameter,;) to the classical onégrelative to a
the outcome for each trial. strongly randomized quantum walls reported. To compare

If, now, o, is reduced(in Fig. 4, 0,,=0.0125), the OUr results to those in Relf15] and to show that no dynamic
phase shifts vary over a small range of values around 2 localization is achieved here, we present plots for the average
The dynamic evolution of the system is affected in such gohoton-number distributions in lin-log and in lin-lin scale.
way that no classical signature is evident in the mean- Following the same lines depicted above, we can investi-
photon-number distribution. A highly nonclassical pattern isgate about errors due to the uncertainty in the beam splitters
found and some deviations from the pure quantum randorffansmittivities. We consider imperfect beam splitters whose
walk case are evident. The distribution is relatively flat overtransmittivities randomly fluctuate around 50% according to
a region that is wider than the pure quantum case. This resuit Gaussian distribution with standard deviatiogs. Com-
is in good agreement with the ana]ysis performed in Refputing the normalized average photon-number distribution
[10] for a small amount of decoherence. In our case, thdor an input coherent state, we find a narrow range of values
limited randomness imposed to the evolution of the photonidor o5 Within which a flat distribution is achieved. Outside
walker simulates the effect of a decoherent coin tossing. Thehis range, the distribution rapidly converges toward a clas-
remarkable feature in this analysis is that we have used justical one.
classical resourceginear optics elements and input coherent ~ T0 give a picture of the combined effect of the two deco-
stateg. Nonetheless, we still simulate the relevant features ofierence processes, we include random phase-shifters be-
the transition from a pure quantum evolution to the classicatween two subsequeiit, operations and random fluctuations

- 200 - 100 100 200 Position
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FIG. 5. Transition from weak to strong randomization in the
model for decoherence in the coin tossing for an input coherent FIG. 7. An implementation of a quantum random walk on a
state|a=1). From top to bottom¢,, is increased. We have con- circle usingdynamic circles

sideredo,,=0.013(a), 0,,=0.13(b), ando,,=0.25(c). The fig- .
ures on the right show the same distributions presented in the IeHeld modes to replace the quantum walkifrat belongs to a

but in lin-log scale, with which the investigation of the appearanceHilbert SPace of dimen;ioN). Thus, the_ qddition of e_l com-
of localization effects is easier. The mean-photon-number distribuPON€Nt, in our setup, increases the difficulty of alignment.

tion smoothly changes from a sharp-squared distribution to a conslOWever, what we want to stress in this paper is the possi-
cave curve that is typical of a classical distributids]. bility of simulating quantum random walks using the wave

nature of a classical field. We have shown that this study has

in the transmittivity of the beam splitters. In Fig. 6 we showPeen possible using our thought experimental setup. Even
the distribution that corresponds t@,,=0.005 anda, though the results could be surprising, the possibility of such
=0.07. We can see that the mean?shotondistributio; ha@ Simulation may be a natural result if we consider that quan-

been very much flattened. Of course, @, and oy, grow tum coherence and quantum interference are concepts origi-
the curve will become Gaussian. ' S " nally borrowed from wave mechanics. This possibility has

been formally proved using standard tools of quantum optics.
Furthermore, we have simulated some decoherence
V. REMARKS AND DISCUSSION mechanisms on the quantum random walk by means of linear
ptical devices and input coherent states. We have observed
ow the average photon-number distributions are modified
when controlled randomness is introduced in the system via
additional phase shifters and imperfect beamsplitters. This
Np analysis is useful both theoreticallglarifying the role of the

As we discussed, the realization of the model we proposg
is not trivial as we pay the price represented by the useé\of 2

004 coherent effects in the simulatipand practically because it

0.035 characterizes the influences of possible sources of errors af-

Ozgz fecting the results of a performed experiment.

'0_02 Fipally, we want to mention here that it is in principle

0015 possible to extend our scheme to quantum random walks on

001 a circle of N points, as shown schematically in Fig. 7. One

can adapt the concept of dynamic line to thatdyhamic
Position circles the walker transits from circle to circi@ach having
- 200 - 100 100 200

a nondecreasing number of sites oniit a way completely
similar to that described in Sec. Il. The number of required

|@=1) considering both the models of decoherence. The number Ogynamlc circles is equal t. Each site on a given circle is

steps considered is 200 and each point is averaged over 50 differeRECUPied by a basic operatioh; occupies the unique site on
trials. We have takem,,=0.005. On the other hand, we have taken the first dynamic circle, all the other sites in the following

FIG. 6. Average photon-number distribution for an input state

9=(m/2)lm| in T, with a random numbem extracted from a Circles(labeled ag=1,... N in Fig. 7) being occupied by
Gaussian distribution centered at 1 and having standard deviatioh,. After each T, operation, the beams are directed, by
ops=0.07. means of some mirrors, toward the proper site on the next
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dynamic circle, as shown in Fig. 7 for the transition from thethe efficiency of such a simulatipris much more difficult

j=0 to the j=1 circle. At the final dynamic circle, the and goes beyond the purposes of this work. It is, however,
mean-photon-number distribution at the sites is revealed byorth stressing that the possibility of classical simulations of
an array of detectors. Basically, this implementation is stillquantum random walk on a line does not necessarily imply
based on the simulation of a quantum walk on a line and it isits usefulness for a practical quantum algorithm. There re-
thUS, obvious that it will simulate quantum walks on a CirClemain important open questions about the gain, in terms of

with classical fields. speedup of quantum computation, that can be obtained from
Under certain circumstances, our approach can be usefyhe classical simulation of quantum walks.

in order to simulate quantum walks on a hypercube of di-  \gte addedKnight et al. also pointed out the possibility
mension 3. This hlgher-d_lmensmnal quantum walk can, Nof simulation of quantum random walks using classical fields
deed, be reduced to a biased quantum walk on a line W'tBut using a totally different setufi8]

properly chosen, asymmetrical, probabilities for the coin to '
be in the|R) or in the|L) state[5]. As we have seen in Sec.

I, properly choosing the parameters of the optical elements

in T;, T,, our proposal is able to realize a quantum random
walk on a line with any biased coin. We, thus, expect the We thank V. Kendon, G. M. Palma, I. A. Walmsley and
possibility to simulate quantum walks on a three-dimensionaZ. Zhao for stimulating discussions and useful comments.
hypercube by means of interference of classical light. How-This work was supported by the UK Engineering and Physi-
ever, the extension of these results to general graphs arwdl Science Research Council Grant No. GR/S14023/01.
hypercubes of higher dimensiofas well as an analysis of M.P. acknowledges IRCEP for financial support.

ACKNOWLEDGMENTS

[1] L. Mandel and E. WolfOptical Coherence and Quantum Op- T.A. Brun, H.A. Cateret, and A. Ambainisbid.67, 032304
tics (Cambridge University Press, Cambridge, 1995 (2003.

[2] U. Schaning, Proceedings of the 40th Annual Symposium on[11] Note that classical random walks can be easily obtained by
Foundations of Computer Science, New York, 1988pub- removing all the phase shifters. In this case, indeed, there can
lished; M. Jerrum, A. Sinclair, and E. Vigoda, Proceedings of be no destructive interference that makes the quantum random
the 33rd ACM Symposium on Theory of Computing, 2001 walk different from its classical counterpart.

(unpublished [12] A. Stefanov, H. Zbinden, N. Gisin, and A. Suarez, Phys. Rev.

[3] R. A. Dana and M. JeanblanEjnancial Markets in Continu- Lett. 88, 120404(2002.
ous Time(Springer, Berlin, 200R [13] M.S. Kim, W. Son, V. Buzek, and P.L. Knight, Phys. Rev. A

[4] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Wa- 65, 032323(2002.
trous, in Proceedings of the 33rd STO(Association for  [14] M. O. Scully and M. S. ZubairyQuantum Optic§Cambridge

Comp. Machinery, New York, 2001 D. Aharanov, A. Am- University Press, Cambridge, 1997
bainis, J. Kempe, U. Vaziranijbid.; J. Kempe, e-print [15] P. Tama I. Jex, and W.P. Schleich, Phys. Rev6A, 052110
quant-ph/0205083. (2002.
[5] J. Kempe, Contemp. Physiddg, 307 (2003. [16] F. Haake Quantum Signature of ChadSpringer-Verlag, Ber-
[6] B.C. Travaglione and G.J. Milburn, Phys. Rev6A, 032310 lin, 1992.
(2002; W. Dur, R. Raussendorf, V.M. Kendon, and H.-J. Br- [17] D. Bouwmeester, |. Marzoli, G. Karman, W.P. Schleich, and
iegel, ibid. 66, 052319(2002; B.C. Sanders, S.D. Bartlett, B. J.P. Woerdman, Phys. Rev.&, 013410(2000.
Tregenna, and P.L. Knighibid. 67, 042305(2003. [18] P.L. Knight, E. Roldan, and J.E. Sipe, Phys. Rev.68
[7] Z. Zhao, J. Du, H. Li, T. Yang, Z.-B. Chen, and J.-W. Pan, 020301R) (2003.
e-print quant-ph/0212149. [19] More precisely, while the number of beam splitters growhlas
[8] M. Hillery, J. Bergou, and E. Feldman, Phys. Rev.68, the required AOMs and phase shifters increaseshasHow-
032314(2003. ever, in the spirit of the proposal shown in Fig. 1, we can
[9] A.M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann, consider basic building blocks made by a beam splitter, two
and A.J. Landahl, Phys. Rev.@6, 032314(2002; N. Shenvi, phase shifters, and two AOMgs the one boxed in Fig.).3
J. Kempe, and K.B. Whaley, quant-ph/0210064. This clarifies that, in this case, the number of building blocks
[10] V. Kendon and B. Tregenna, Phys. Rev6A 042315(2003; grows linearly withN.

012310-7



