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Simulation of quantum random walks using the interference of a classical field

H. Jeong, M. Paternostro, and M. S. Kim
School of Mathematics and Physics, The Queen’s University, Belfast BT7 1NN, United Kingdom

~Received 10 May 2003; published 16 January 2004!

We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters,
phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave
nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoher-
ence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the
decoherence parameters.
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I. INTRODUCTION

Random walks are useful models for physicists to stu
statistical behaviors of nature such as Brownian motions
free particles@1#. They have also been studied for practic
use such asalgorithms in computer science@2# and risk man-
agement in finance@3#. Quantum versions of random walk
have been recently studied for both fundamental inter
and the expectation of building new algorithms for quant
computation@4#. There have been several suggestions fo
practical implementation of quantum random walks, us
ions in linear traps, optical lattices, and cavity QED@5,6#.
Recently, proposals for the implementation of quantum r
dom walks with linear optical elements have been sugge
@7,8# and the first search algorithm using quantum rand
walks has been reported@9#. Quantum random walks typi
cally show very different patterns from the Gaussian dis
butions for classical random walks, which have some
markable characteristics such as an exponentially fast hit
time @4#. It has been pointed out that these differences
due to the existence of quantum coherence@5#.

In this paper, we suggest a theoretical scheme to simu
quantum random walks on a line using the wave nature
classical light fields. This is related to the fact that the idea
quantum coherence is originally borrowed from the interf
ence of wave mechanics shown in Young’s double-slit
periment. In our scheme, it is also possible to simulate de
herence processes modeled using additional random ph
shifters and beam splitters with erratic transmittivity. Th
analysis is relevant under different points of view. First of
it shows that, increasing the amount of decoherence tha
fects the system, the distribution of the random walk chan
from a totally quantum one to a classical Gaussian distri
tion. This clarifies the role played by the interference effe
in the dynamics of a quantum walker and represents an u
rior proof of the validity of a simulation based on interfer
metric devices. On the other hand, studying the effects
possible sources of errors in our model, we can single out
causes of certain deviations from the ideality in the patte
resulting from performed experiments.

This paper is organized as follows. In Sec. II, we brie
review coined quantum random walks on a line with th
characteristics and we suggest a scheme for the simulatio
quantum random walks. We will later show that,with th
setup, we can simulate quantum random walks using w
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nature of a field. This possibility is neither always obvio
nor mentioned in other models. It should be pointed out t
a similar scheme of all-optical implementation has been s
gested by Zhaoet al. @7#. Their proposal is entirely based o
the quantum coherence of a quantum superposition of
polarization degrees of freedom. On the other hand,
scheme is able to take the wave nature of any input fi
~classical or nonclassical! to show the same interference pa
tern. This, with the explanation of the role of the pha
shifters in our scheme, is shown in Sec. III. Section IV
devoted to the study of the decoherence effects in our p
posal. We show that decoherence on the coin tossing op
tion and on the quantum walker motion can be simulated
studied by means of our system, thus demonstrating the
of the interference effectsin this simulation. This investig
tion is useful even from a practical point of view because
singles out and characterizes the effect of a class of er
that could affect a performed experiment.

II. QUANTUM RANDOM WALK WITH LINEAR
OPTICAL ELEMENTS

In unidimensional coined random walks, the walker
restricted to move along a line with a number of discre
integer points on it.The walker is supposed to be a class
particle on one of the integer points. A coin tossing det
mines whether the walker moves left or right for each st
In the quantum version of coined random walks, the class
coin is replaced by a quantum bit whose statesuL& and uR&
represent the logical values LEFT and RIGHT. The quant
coin can be embodied by an internal degree of freedom
the walker itself@4#. The walker, which is a quantum pa
ticle, moves conditioned to the result of the coin tossi
operation which is realized by a Hadamard transform@5#. For
example, the transformation for one step of the particle fr
an arbitrary pointX is simply

uX,R&→
1

A2
~ uX11,R&1uX21,L&),

~1!

uX,L&→
1

A2
~ uX11,R&2uX21,L&).
©2004 The American Physical Society10-1
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After n steps, the state of the system isuCn&. Differently
from the classical walks on a line, where the position of
particle is monitored at every step of the process, in
quantum version the walker remains in a superposition
many positions until the final measurement is perform
The probability for the particle being atXk after n steps is
Pn(Xk)5u^Ru^XkuCn&u21u^Lu^XkuCn&u2. During the quan-
tum random walk process, destructive as well as construc
interference may occur. The quantum correlation betw
two different positions on a line introduced at the first st
may be kept by delaying the measurement step until the fi
iteration.

The probability distribution to find the particle at a give
position is generally dependent on the initial state of
system@5# and exhibits avery structured pattern. This allo
only numerical evaluations of its variance. It has been sho
that, roughly, the standard deviationsQRW grows linearly
with N and is independent of the initial state of the coin@6#.
Thus, the walker in quantum walks explores its possible c
figurations faster than in classical walks, where the stand
deviation grows asAN. This motivates the conjecture tha
algorithms based on quantum random walks could beat t
classical versions in terms of the time needed to solv
problem@9#.

There have been a few suggestions for experime
implementations of quantum random walks@6#. Recently, it
has been shown that quantum random walks can be rea
using linear optical elements@7#. In this scheme, polarization
beam splitters, half-wave plates, and photodetectors are u
The walker is embodied in a single-photon state and
entire scheme is based on the quantum coherence of
polarization states of the photon. This result is inspiring a
proposal for an all-optical implementation of a quantum ra
dom walk, even if it requires a reliable single-photon st
source, which is very demanding, and the apparatus is hi
sensitive to variations in the photons polarization.

First, we propose a scheme which uses ordinary 50
beam splitters, phase shifters, and photodetectors. We fo
late quantum random walks with the coin tossing operat
embedded in the translation of the walker particle. In o
scheme, the polarization degree of freedom does not pl
role and, thus, is not considered at all. A single-mode fie
including a thermal field, may be used as an input to simu
the distribution of the quantum random walk. In fact, th
may be apparent if we recall that Young used a thermal fi
for his double-slit experiment and showed interference.

Let us consider the experimental setup, composed
50:50 beam splitters, phase shifters, and photodetec
shown in Fig. 1. For convenience, we denote the field mo
propagating sidewards bys and downwards byd. As the
beam splitters used here are polarization insensitive, th
modes do not refer to polarization. Here, we conside
single-photon stateu1&s as the initial state of the walker an
we show that, in this case, our scheme gives rise to co
quantum random walks on a line. At the first beam split
B̂1(u,f) the input field is mixed with a field mode prepare
in a vacuum state@Fig. 1~a!#. The following transformation is
realized:
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B̂1~u,f!u0,1&d,s5cos
u

2
u1,0&d,s1eifsin

u

2
u0,1&d,s , ~2!

where B̂1(u,f)5exp$(u/2)(eifâs
†âd2e2 ifâd

†âs)% is the

beam splitter operator andâs,d (âs,d
† ) are the annihilation

~creation! operators for a sideward and a downward fie
mode, respectively. We define the transformation in Eq.~2!

as T̂1. We introduce the transformationT̂2,

u1,0&d,s→
1

A2
~ u1,0&1u0,1&)d,s , ~3!

u0,1&d,s→
1

A2
~ u1,0&2u0,1&)d,s , ~4!

which can be realized with a 50:50 beam splitterB̂2(p/2,p)

and two phase shiftersP̂1(p/2)5eipâs
†âs/2 and P̂2(2p/2)

5e2 ipâd
†âd/2 as shown in Fig. 1~a!.

The scheme can simply be illustrated as recursive ap
cations ofT̂2 after the initial transformationT̂1, as shown in
Fig. 1~b!. A dynamic line @7# is represented by a row o
aligned optical elements~or photodetectors!, labeledj in Fig.
1~b!. On the other hand, a node is given by a point rep
sented byk on a dynamic line. For example, the detect

FIG. 1. All-optical setup for the simulation of quantum rando

walks on a line.~a! Two different kinds of operations are shown:T̂1

is an ordinary beam splitterB̂1(u,f) andT̂2 involves the cascade o

the phase shifterP̂1(p/2), of a 50:50 beam splitterB̂2(p/2,p) and

of the phase shifterP̂2(2p/2). ~b! Proposed setup, shown up to th
fourth dynamic line. Apart from the input state, all the other mod
are initially prepared in vacuum states.
0-2
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D22 is on the fourth dynamic line and occupies the nodek
522. If a photon is incident downward~sideward! on a
dynamic linej and nodek, we represent its state asuk,d& j
(uk,s& j ). The transition from a dynamic linej to j 11 by
means of the operationT̂2 is synthesized by

uk,d& j→
1

A2
~ uk11,d&1uk21,s&) j 11 ,

~5!

uk,s& j→
1

A2
~ uk11,d&2uk21,s&) j 11 .

We notice that Eqs.~5! are equivalent to Eqs.~1!. Thus, the
actions ofT̂1 and T̂2 on a single-photon state exactly corr
sponds to a coined quantum random walk. Any initial co
state, up to an irrelevant global phase, can be prepare
changingu and w in T̂1. If u5p/2 andf52p/2, we get
the symmetric probability distribution that corresponds to
initial coin state (uR&1 i uL&)/A2 in a coined quantum walk
@6#. In our model, the difference between quantum and c
sical walks from a certain step is due to the interference
the walker’s paths on theT̂2 processes@11#.

III. ANALYSIS WITH DIFFERENT STATES
OF THE WALKER

In this section we show that the scheme suggested in
1 exhibits the same interference pattern at the detectors
gardless of the nature of the input state. We first address
case of an input coherent state and, then, we extend
analysis to any field.

A. Coherent states

A coherent stateua& (aPC) is generally assumed to b
the best description of the state of a laser beam. We cons
ua& as the input state of the walker. The action of the be
splitter operator on two input coherent states does not lea
any entanglement between the output modes@13#. Assuming
u5p/2 andf52p/2 for the T̂1 process, we can calculat
the distribution of the average photon number as a func
of the positionk on the chosen final dynamic line. For e
ample, forN54 steps, we find the final state

uF4&5U2 ia

4
,sL

4

24U2 ia

4
,dL

4

22U122i

4
a,sL

4

22Ua4 ,dL
4

0

^U ia4 ,sL
4

0U222 i

4
a,dL

4

12Ua4 ,sL
4

12U2a

4
,dL

4

14

,

~6!

with ua,s& j
k (ua,d& j

k) indicating a coherent state incide
sideward~downward! on a dynamic linej and nodek. The
average photon-numberNp(N,k) for node k is Np(4,k)
5M(4,k)Nin(ua&), with

M~4,64!5 1
16 ,M~4,62!5 3

8 , M~4,0!5 1
8 . ~7!
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Here,Nin(ua&)5uau2 is the average photon number for th
input state ua& and M(N,k) is the normalized photon-
number distributionat stepN and nodek. It characterizes the
output photon-number distribution at the detectors. We fi
that the distributionM(4,k) for an input coherent state is th
same as the one for the single-photon input@6#, i.e., the two
different inputs result in the same photon-number distrib
tion. The average photon numbers for stepsN54,5,6 are
shown in Fig. 2. The deviations of a quantum walk from
classical counterpart appears from the fourth step. This is
to the particular values of the parameters in the transfor
tion T̂1 : u5p/2 andf52p/2. Since a coherent-state inpu
results in the same quantum random-walk pattern of
single-photon case for all the steps we have considered
conjecture that the quantum walk pattern results, even
any initial state for a general number of stepsN. In what
follows, we prove the validity of this conjecture.

B. General case

With the proposed setup, the quantum walk process
be represented as

uFN&5ÛT( j 5N) . . . ÛT( j 51)T̂1( j 50)uF0&[ÛQW
N uF0&,

whereuF0& is the input state,N is the number of steps, an
ÛT is an appropriate unitary transformation for each st
For a coherent state, the previous result can be summar
as

uF0&5ua& →
ÛQW

N

ux1a&1ux2a&2 . . . uxNa&2N5uFN&. ~8!

Equation ~6! is an explicit example. The average photo
number for mode r (0<r<2N) is nr5ux r u2uau2

5ux r u2Nin(ua&),with r 50 corresponding to the mode inc
dent on the detector that occupiesj 5N, k52N. It is easy to
show that the average photon number for thekth node and

–6 –4 –2 2 4 6
Position

0.1

0.2

0.3

0.4

Np
N=4

N=5

N=6

FIG. 2. Average photon-number distribution for an input coh
ent stateua51&, as a function of the position along the final dy
namic line. Three different cases are considered: the solid-line c
is relative to a number of stepsN54, the dashed-line represen
N55, while the dot-dashed one is forN56. The plots match per-
fectly the graphs expected for a coined quantum walk on a line
the general case ofaÞ1, Np has to be normalized with respect t
uau2.
0-3



ia

d
at

ge
th
e

de
t

, a
nl
v
h
m
e

x

re
ed
in
is

ro-
an
3,

s by
cted

s or
in

tec-
am
The

ases

on
con-
tric
mis-
we
h
r-
etup
o-
the

e of
om

the
at a

we
to

dup
ects
dy
ow
re

In
with
s
M
that

JEONG, PATERNOSTRO, AND KIM PHYSICAL REVIEW A69, 012310 ~2004!
j th step is given byNp( j ,k)5nj 2k1nj 2k115(ux j 2ku2

1ux j 2k11u2)Ntot(ua&), where x05x2N11[0. This result
also means that

M~ j ,k!5ux j 2ku21ux j 2k11u2. ~9!

Note thatx r does not depend on the amplitude of the init
state but only on the structure ofÛQW

N .
The initial-state density operator inP representation can

be generally written as@1,14#

r05E d2aP~a!ua&^au, ~10!

where P(a) is the P representation of the initial stater0.
Provided thatP(a) is a sufficiently singular generalize
function, such a representation exists for any given oper
r0 @14#. After N steps, the density operator evolves as

rN5ÛQW
N r0ÛQW

N†
5E d2aP~a!ux1a&1^x1au ^ •••

^ ux2Na&2N^x2Nau, ~11!

where Eqs.~8! and ~10! have been used. TheP representa-
tion is particularly appropriate for our aim to find the avera
photon-number distribution since it can be shown that
moments of theP representation give the expectation valu
of normally ordered products of bosonic operators@1,14#.

The marginal density matrix for moder is simply ob-
tained as

r r5E d2aP~a!ux ra& r^x rau. ~12!

The average photon number for ther th mode is

nr5Trr@r r â
†â#5ux r u2E d2aP~a!uau25ux r u2Nin~r0!,

and the average photon number for thej th step and
kth node is Np( j ,k)5M( j ,k)Ntot(r0)5(ux j 2ku2
1ux j 2k11u2)Ntot(r0), from which Eq.~9! is found to hold
for the case of any input field. The interference pattern
termined byM( j ,k) does not depend on the initial inpu
state. For a given set of beam splitters and phase shifters
input state will result in the same interference pattern. O
an overall factor will be changed, according to the total a
erage photon number of the initial state. For a classical lig
in a pictorial way, the result is nothing but quantum rando
walks with many walkers simulated by interference betwe
fields. For a weak field, the quantum random walks with
single walker can be probabilistically performed. For e
ample, given a coherent state witha51, a single photon is
detected with 37% of the probability.

A problem of the approach employingdynamic linesfor
quantum random walks is that the required number of
sources~in terms of the number of optical elements requir
for a chosen number of steps and of the field modes
volved! grows quadratically with the number of steps. Th
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imposes serious limitations to the scalability of such a p
posal and affects the efficiency of a simulation based on
interferometric device. In the alternative proposal in Fig.
this problem is bypassed measuring all the even position
the upper row of detectors, while the odd ones are dete
by the lower row. Acousto-optic modulators~AOMs! @12#
are used to guide a beam toward a mirror for further step
toward a detector for the measurement. When the AOMs
the top row have to deflect the light beams toward the de
tors, those in the bottom row should not be active. The be
splitters and phase shifters in Figs. 1 and 3 are the same.
number of required resources, in this latter scheme, incre
only linearly with the number of steps@19#.

There are many difficulties,for a practical implementati
of the schemes we propose, that have to be taken into
sideration. For example, being a multimode interferome
apparatus, the proposed setup could be affected by the
alignment of the involved optical elements. Furthermore,
need 2N modes forN steps of the walk process, whic
makes the controllability of the system very difficult. Neve
theless, even if these problems render the proposed s
challenging under an experimental point of view, our pr
posal has to be seen as a thought experiment useful for
investigation of the physics that is behind the appearanc
the characteristic probability pattern of a quantum rand
walk.

IV. SIMULATION OF DECOHERENCE IN QUANTUM
RANDOM WALKS

To better understand how interference effects are at
basis of a quantum walk process we study the effect th
certain class of errors has on the performance of the setup
propose. A decoherence mechanism is potentially able
wash out the interference pattern, thus erasing the spee
characteristic of a quantum walk and restoring some asp
of the classical diffusion process. In this section we stu
two different models for decoherence in our setup. We sh
the transition of the dynamics of the walker from the pu

input

AOM AOM AOM AOM

AOM AOM

0

+1

2

1

+2

M M

M MM M

PSPS

PS PS

FIG. 3. Alternative setup for quantum random walk on a line.
this scheme, the number of required resources scales linearly
the number of stepsN. Two rows of acousto-optic modulator
~AOMs! direct the incoming beams of light to the perfect mirrors
or to the detectors row. This setup is conceptually equivalent to
sketched in Fig. 1~b!.
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quantum to the classical case. This analysis is in part m
vated by the attention that has been recently paid to the
in which the quantum walk pattern is modified by imperfe
coin tossings or walker translations, both for quantum w
on a line and higher dimensions@6,10#. A remarkable result,
shown by Kendon and Tregenna in Ref.@10#, is that small
amounts of decoherence, rather than rendering the pro
useless for the purposes of quantum information, amazin
increase the capability of the system to explore its poss
configurations. This gives a probability distribution to fin
the walker in a certain position that spreads faster than
pure dynamics. Our study is able to highlight even this
pect of the dynamics of the walker. On the other hand, stu
ing the effects of possible sources of decoherence is w
from a practical point of view. The characterization of som
relevant sources of errors, in the proposed setup, will m
us understand why the pattern resulting from a perform
experiment devoted to the realization of a quantum w
process could deviate from the ideality.

We have considered ulterior phase-shift operations p
formed just before and after eachT̂2 transformation. The
shift in these additional operations is randomly chosen fr
a Gaussian distribution. In what follows, we show how t
mean-photon-number distribution changes its shape~from a
classical Gaussian pattern to an approximately flat distr
tion then to a quantum distribution! as the amount of ran
domness in the additional phase shifts is reduced.

If l is a number randomly taken from a Gaussian distri
tion centered at 1 with an adjustable standard deviationspp ,
we shift the phase of each field mode in Fig. 1~b! by an
amount equal to 2pu l u. If the phase shift is equal to 2p, the
additional phase shifters are ineffective and a quantum w
pattern is recovered. On the other hand, if the amoun
shifts deviates from thisneutral value, they affect the inter
ferences responsible for the quantum walk and some de
tions have to be expected and the average over alarge n
ber of trials results in a classical distribution.

In Fig. 4, the shown distributions are the results of
average over 50 different trials: in each one of them, and
each step in a single trial, a different random value forl is
considered and the mean photon-number at the various l
tions on the final dynamic line is calculated, averaging o
the outcome for each trial.

If, now, spp is reduced~in Fig. 4, spp50.0125), the
phase shifts vary over a small range of values aroundp.
The dynamic evolution of the system is affected in such
way that no classical signature is evident in the me
photon-number distribution. A highly nonclassical pattern
found and some deviations from the pure quantum rand
walk case are evident. The distribution is relatively flat ov
a region that is wider than the pure quantum case. This re
is in good agreement with the analysis performed in R
@10# for a small amount of decoherence. In our case,
limited randomness imposed to the evolution of the photo
walker simulates the effect of a decoherent coin tossing.
remarkable feature in this analysis is that we have used
classical resources~linear optics elements and input cohere
states!. Nonetheless, we still simulate the relevant features
the transition from a pure quantum evolution to the class
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spread due to a large superimposed randomness.
In Ref. @15#, the effect of phase randomness in a gene

interferometric device has been investigated. In particula
the device can be thought as the iterative applications
some basic units, each one affected by a fixed random
@15#, then Anderson localization can be obtained. Inde
when fixed randomness is considered, a connection to
theory of the band-diagonal transfer matrix~examined in
Ref. @16#! can be established. It is this kind of dynamic ev
lution that leads to localization of the walker. Physically, t
model described in this case is near to the repeated pass
of a beam of light through a dielectric layer placed inside
electromagnetic cavity, as described in Ref.@17#. In our
model, however, no localization effect is achieved since d
ferent values for the phase shifts at each step are taken
this respect, our case is far from a band-diagonal evolut
These qualitative arguments are resumed in Fig. 5, where
transition from a flat distribution~obtained for a small deco
herence parameterspp) to the classical one~relative to a
strongly randomized quantum walk! is reported. To compare
our results to those in Ref.@15# and to show that no dynami
localization is achieved here, we present plots for the aver
photon-number distributions in lin-log and in lin-lin scale.

Following the same lines depicted above, we can inve
gate about errors due to the uncertainty in the beam split
transmittivities. We consider imperfect beam splitters who
transmittivities randomly fluctuate around 50% according
a Gaussian distribution with standard deviationsbs . Com-
puting the normalized average photon-number distribut
for an input coherent state, we find a narrow range of val
for sbs within which a flat distribution is achieved. Outsid
this range, the distribution rapidly converges toward a cl
sical one.

To give a picture of the combined effect of the two dec
herence processes, we include random phase-shifters
tween two subsequentT̂2 operations and random fluctuation

-200 -100 100 200
Position

0.01

0.02

0.03

0.04

0.05

Np

FIG. 4. Average photon-number distribution vs position for
input coherent stateua51& and for 200 steps. Different cases a
considered: the bell-like curve represents the case of an introd
randomnessl taken from a Gaussian distribution centered at 1 a
with spp50.25. The curve evidently resembles the expected Ga
ian distribution. The solid line shows the results forspp50.0125. It
is compared with a uniform distribution between2200/A2 and
200/A2, fictitiously extended to improve visibility. Finally, the
dashed curve represents the pure quantum case correspondinl
chosen from a Dirac delta functiond( l 21). Each point in the simu-
lated curves is averaged over 50 different trials.
0-5
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in the transmittivity of the beam splitters. In Fig. 6 we sho
the distribution that corresponds tospp50.005 andsbs
50.07. We can see that the mean-photondistribution
been very much flattened. Of course, asspp andsbs grow,
the curve will become Gaussian.

V. REMARKS AND DISCUSSION

As we discussed, the realization of the model we prop
is not trivial as we pay the price represented by the use ofN
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Np c

-100 0 100 200Position
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-80
-60
-40
-20

0
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Np b
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Log Np b
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-120
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-80
-60
-40
-20

Log Np a

FIG. 5. Transition from weak to strong randomization in t
model for decoherence in the coin tossing for an input cohe
stateua51&. From top to bottom,spp is increased. We have con
sideredspp50.013~a!, spp50.13 ~b!, andspp50.25 ~c!. The fig-
ures on the right show the same distributions presented in the
but in lin-log scale, with which the investigation of the appearan
of localization effects is easier. The mean-photon-number distr
tion smoothly changes from a sharp-squared distribution to a c
cave curve that is typical of a classical distribution@15#.

-200 -100 100 200
Position

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Np

FIG. 6. Average photon-number distribution for an input st
ua51& considering both the models of decoherence. The numbe
steps considered is 200 and each point is averaged over 50 diff
trials. We have takenspp50.005. On the other hand, we have tak

u5(p/2)umu in T̂2, with a random numberm extracted from a
Gaussian distribution centered at 1 and having standard devia
sbs50.07.
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s

e

field modes to replace the quantum walker~that belongs to a
Hilbert space of dimensionN). Thus, the addition of a com
ponent, in our setup, increases the difficulty of alignme
However, what we want to stress in this paper is the po
bility of simulating quantum random walks using the wa
nature of a classical field. We have shown that this study
been possible using our thought experimental setup. E
though the results could be surprising, the possibility of su
a simulation may be a natural result if we consider that qu
tum coherence and quantum interference are concepts o
nally borrowed from wave mechanics. This possibility h
been formally proved using standard tools of quantum opt

Furthermore, we have simulated some decohere
mechanisms on the quantum random walk by means of lin
optical devices and input coherent states. We have obse
how the average photon-number distributions are modi
when controlled randomness is introduced in the system
additional phase shifters and imperfect beamsplitters. T
analysis is useful both theoretically~clarifying the role of the
coherent effects in the simulation! and practically because i
characterizes the influences of possible sources of error
fecting the results of a performed experiment.

Finally, we want to mention here that it is in principl
possible to extend our scheme to quantum random walks
a circle of N points, as shown schematically in Fig. 7. On
can adapt the concept of dynamic line to that ofdynamic
circles: the walker transits from circle to circle~each having
a nondecreasing number of sites on it! in a way completely
similar to that described in Sec. II. The number of requir
dynamic circles is equal toN. Each site on a given circle is
occupied by a basic operation:T̂1 occupies the unique site o
the first dynamic circle, all the other sites in the followin
circles ~labeled asj 51, . . . ,N in Fig. 7! being occupied by
T̂2. After each T̂2 operation, the beams are directed,
means of some mirrors, toward the proper site on the n

nt

ft
e
-

n-

of
ent

on

T2T2

j=N

1T

j=0

j=1

Mirror Mirror

FIG. 7. An implementation of a quantum random walk on
circle usingdynamic circles.
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dynamic circle, as shown in Fig. 7 for the transition from t
j 50 to the j 51 circle. At the final dynamic circle, the
mean-photon-number distribution at the sites is revealed
an array of detectors. Basically, this implementation is s
based on the simulation of a quantum walk on a line and i
thus, obvious that it will simulate quantum walks on a circ
with classical fields.

Under certain circumstances, our approach can be us
in order to simulate quantum walks on a hypercube of
mension 3. This higher-dimensional quantum walk can,
deed, be reduced to a biased quantum walk on a line w
properly chosen, asymmetrical, probabilities for the coin
be in theuR& or in theuL& state@5#. As we have seen in Sec
II, properly choosing the parameters of the optical eleme
in T̂1 , T̂2, our proposal is able to realize a quantum rand
walk on a line with any biased coin. We, thus, expect
possibility to simulate quantum walks on a three-dimensio
hypercube by means of interference of classical light. Ho
ever, the extension of these results to general graphs
hypercubes of higher dimensions~as well as an analysis o
-

on

of
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a-

r-
.

n

n
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the efficiency of such a simulation! is much more difficult
and goes beyond the purposes of this work. It is, howe
worth stressing that the possibility of classical simulations
quantum random walk on a line does not necessarily im
its usefulness for a practical quantum algorithm. There
main important open questions about the gain, in terms
speedup of quantum computation, that can be obtained f
the classical simulation of quantum walks.

Note added. Knight et al. also pointed out the possibility
of simulation of quantum random walks using classical fie
but using a totally different setup@18#.
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